If it's not what You are looking for type in the equation solver your own equation and let us solve it.
24x^2=160x
We move all terms to the left:
24x^2-(160x)=0
a = 24; b = -160; c = 0;
Δ = b2-4ac
Δ = -1602-4·24·0
Δ = 25600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25600}=160$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-160)-160}{2*24}=\frac{0}{48} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-160)+160}{2*24}=\frac{320}{48} =6+2/3 $
| 2x=4x-8= | | F(x)=13/x-3 | | 3(u+2)-5u=3u+6-5u | | 5/8a=-20 | | K(x)=-3x^2-3 | | 8x+10=9x-5 | | 36=x/4=2 | | 36+x/2=4 | | 15-w/4=38 | | 72+4y=-4y | | 36x+4=2 | | t=3/7=4/7 | | 18=x/4+2 | | 18=x/2+4 | | 5x2+-8x-1=0 | | (3x+2)÷5=31 | | 25^3x+2=125 | | n+3n=124 | | 6u^2+54=0 | | 5p^2=0 | | 8x+6+x=4x+7 | | (2p+3p)^2=0 | | 8x+12=8x-5 | | 2n+n=16 | | 1/6x2/3x=1 | | 7+19r-5=7r+66-4r | | 1/v-4-4/v+2=-3/v^2-2v-8 | | 10x×5=135 | | 3x(5-2)+-2(2x-5)=35 | | 3(x-5)+2(x-3)=14 | | 7x-9=8x+20 | | -0.04(5x-8)=0.08(10x-1) |